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Motivation and Problem 
Statement 

•  Too much data. 
•  Data Analysis “meat 

grinders” not especially 
responsive to needs of 
scientific research 
community. 

•  What scientific users want: 
–  Scientific Insight 
–  Quantitative results 
–  Feature detection, tracking, 

characterization 
–  (lots of bullets here omitted) 

•  See: 
http://vis.lbl.gov/Publications/2002/

VisGreenFindings-LBNL-51699.pdf 
http://www-user.slac.stanford.edu/rmount/dm-

workshop-04/Final-report.pdf  
Wes Bethel
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Parallel I/O:  
A User Perspective 

•  Requirements (desires) 
–  Write data from multiple processors into a single file 
–  Undo the “domain decomposition” required to implement parallelism 
–  File can be read in the same manner regardless of the number of CPUs that read 

from or write to the file. (eg. we want to see the logical data layout… not the physical 
layout) 

–  Do so with the same performance as writing one-file-per-processor (only writing one-
file-per-processor because of performance problems) 

seems simple: but scientists are tough customers 
•  Scientists and Application Developers 

–  Cannot agree on anything (Always roll their own implementation) 
–  Only care about their OWN data model and requirements 
–  Cannot tell the difference between a file format and a data schema (so they 

end up being one-in-the-same) 
–  Are forced to specify physical layout on disk by existing APIs 

•   Always make the wrong choices when forced to do so! 
•  Always blame the filesystem or hardware when the performance is terrible 



Parallel I/O:  
A User Perspective 

•  Requirements (desires) 
–  Write data from multiple processors into a single file 
–  Undo the “domain decomposition” required to implement parallelism 
–  File can be read in the same manner regardless of the number of CPUs that read 

from or write to the file. (eg. we want to see the logical data layout… not the physical 
layout) 

–  Do so with the same performance as writing one-file-per-processor (only writing one-
file-per-processor because of performance problems) 

seems simple: but scientists are tough customers 
•  Scientists and Application Developers 

–  Cannot agree on anything (Always roll their own implementation) 
–  Only care about their OWN data model and requirements (forget IGUDM) 
–  Cannot tell the difference between a file format and a data schema (so they 

end up being one-in-the-same) 
–  Are forced to specify physical layout on disk by existing APIs 

•   Always make the wrong choices when forced to do so! 
•  Always blame the filesystem or hardware when the performance is terrible 

–  I have spent most of my career as one of those people! 



Usage Model 
•  Checkpoint/Restart 

–  Typically not functional until ~1 month before the system is retired 
–  Length of time between system introduction and functional CPR growing 
–  Most users don’t do hero applications: tolerate failure by submitting more jobs (and 

that includes apps that are targetting hero-scale applications) 
–  Most people doing “hero applications” have written their own restart systems and 

file formats 
–  Typically close to memory footprint of code per dump  

•  Must dump memory image ASAP!  
•  Not as much need to remove the domain decomposition (recombiners for MxN problem) 
•  not very sophisticated about recalculating derived quantities (stores all large arrays) 
•  Might go back more than one checkpoint, but only need 1-2 of them online (staging) 
•  Typically throw the data away if CPR not required 

•  Data Analysis Dumps 
–  Time-series data most demanding 

•  Typically run with coarse-grained time dumps 
•  If something interesting happens, resubmit job with higher output rate (and take a huge 

penalty for I/O rates) 
•  FLASH code: select output rate to do < 10% of exec time… full dump costs 30% or more 

(up to 60% of exec time) (info from Katie Antypas) 
•  Async I/O would make 50% I/O load go away, but nobody uses it! (rarely works) 

–  Optimization or boundary-value problems typically have flexible output 
requirements (typically diagnostic) 



Finding Data 

•  Use clever file names to indicate data contents 
•  Use extensions to indicate format 

–  However, subtle changes in file format can render file 
unreadable 

–  Mad search to find sub-revision of “reader” to read an older 
version of a file 

–  Consequence of confusing file format with data model 
(common in this community) 

•  Tend to get larger files when hierarchical self-
describing formats are used 
–  Filesystem metadata (clever file names) replaced by file 

metadata 
–  File as “object database container” 

•  Indexing 
–  Metadata indices (SRMs, Metadata Catalogs) 
–  Searching individual items within a dataset (FastBit) 



Common Storage Formats 

•  ASCII:  (pitiful… this is still common… even for 3D I/O… and you want an exaflop??) 
–  Slow 
–  Takes more space! 
–  Inaccurate 

•  Binary 
–  Nonportable (eg. byte ordering and types sizes) 
–  Not future proof 
–  Parallel I/O using MPI-IO 

•  Self-Describing formats 
–  NetCDF/HDF4, HDF5, Silo 
–  Example in HDF5: API implements Object DB model in portable file 
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO) 

•  Community File Formats 
–  FITS, HDF-EOS, SAF, PDB, Plot3D 
–  Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API 



Common Data Models/Schemas 
•  Structured Grids:  

–  1D-6D domain decomposed mesh data 
–  Reversing Domain Decomposition results in strided disk access pattern 
–  Multiblock grids often stored in chunked fashion 

•  Particle Data 
–  1D lists of particle data (x,y,z location + physical properties of each particle) 
–  Often non-uniform number of particles per processor 
–  PIC often requires storage of Structured Grid together with cells 

•  Unstructured Cell Data 
–  1D array of cell types 
–  1D array of vertices (x,y,z locations) 
–  1D array of cell connectivity 
–  Domain decomposition has similarity with particles, but must handle ghost cells 

•  AMR Data (not too common yet) 
–  Chombo: Each 3D AMR grid occupies distinct section of 1D array on disk (one array per 

AMR level). 
–  Enzo (Mike Norman, UCSD): One file per processor (each file contains multiple grids) 
–  BoxLib: One file per grid (each grid in the AMR hierarchy is stored in a separate,cleverly 

named, file) 
•  Increased need for processing data from terrestrial sensors (read-oriented) 

–  NERSC is now a net importer of data 



Confusion about Data Models 

•  Scientist/App Developers generally confused about 
difference between Data Model and File Format 
–  Should use modern hierarchical storage APIs such as HDF5 or 

NetCDF 
–  Performance deficiencies in HDF5 and pNetCDF generally traced 

back to performance of Underlying MPI-IO layer 
•  Point to deficiency of forcing specification of physical layout 

•  More Complex Data Models 
–  NetCDF is probably too weak of a data model 
–  HDF5 is essentially an object database with portable self-describing 

file format 
–  Fiber bundles is probably going TOO FAR 



Common Physical Layouts 

•  One File Per Process 
–  Terrible for HPSS! 
–  Difficult to manage 

•  Parallel I/O into a single file 
–  Raw MPI-IO 
–  pHDF5 pNetCDF 

•  Chunking into a single file 
–  Saves cost of reorganizing data 
–  Depend on API to hide physical layout 
–  (eg. expose user to logically contiguous array even though it 

is stored physically as domain-decomposed chunks) 



Common Themes for 
Storage Patterns  

•  Three patterns for parallel I/O into single file 
–  >1D I/O: Each processor writes in a strided access 

pattern simultaneously to disk (can be better organized… 
eg. PANDA) 

–  1D I/O: Each processor writes to distinct 
subsections of 1D array (or more than one array) 

–  1D Irregular I/O: Each processor writes to distinct, but non-
uniform subsections of 1D array (AMR, Unstructure Mesh 
Lists, PIC data) 

•  Three Storage Strategies 
–  One file per processor (terrible for HPSS!!!) 
–  One file per program: reverse domain decomp 
–  One file per program: chunked output 



3D (reversing the domain decomp) 



3D (reversing the decomp) 

Logical


Physical




3D (block alignment issues) 

720 bytes
 720 bytes


Logical


Physical

8192 bytes


• Block updates require mutual exclusion

• Block thrashing on distributed FS

• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation

• Unaligned block accesses can kill performance! (but are necessary in practical I/O 
solutions)


Writes not aligned 

to block boundaries




Common Physical Layouts 

•  One File Per Process 
–  Terrible for HPSS! 
–  Difficult to manage 

•  Parallel I/O into a single file 
–  Raw MPI-IO 
–  pHDF5 pNetCDF 

•  Chunking into a single file 
–  Saves cost of reorganizing data 
–  Depend on API to hide physical layout 
–  (eg. expose user to logically contiguous array even though it 

is stored physically as domain-decomposed chunks) 



Performance Experiences 



Platforms 

Machine 
Name 

Parallel 
File 

System 

Proc 
Arch 

Inter-
connect 

Peak IO 
BW 

Max 
Node BW 

to IO 
Jaguar Lustre Opteron SeaStar 18*2.3GB/s 

= 42GB 
3.2GB/s 

(1.2GB/s) 

Bassi GPFS Power5 Federation 6*1GB/s = 
~6.0GB/s 

4.0GB/s 
(1.6GB/s) 

•  18 DDN 9550 couplets on Jaguar, each 
couplet delivers 2.3 - 3 GB/s 

•  Bassi has 6 VSDs with 8 non-redundant 
FC2 channels per VSD to achieve ~1GB/
s per VSD. (2x redundancy of FC) 

Effective 
unidirectional  
bandwidth in 
parenthesis 



Caching Effects 

Machine 
Name 

Mem Per 
Node 

Node 
Size 

Mem/ 
Proc 

Jaguar 8GB 2 4GB 

Bassi 32GB 8 4GB 

File Size Effect on Jaguar
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•  On Bassi, file Size should 
be at least 256MB/ proc to 
avoid caching effect 

•  On Jaguar, we have not 
observed caching effect, 
2GB/s for stable output 



Transfer Size (P = 8) 

•  Large transfer size is critical to achieve 
performance (common cause for weak perf.) 

•  Amdahl’s law commonly kills I/O performance 
for small ops (eg. writing out record headers)  
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GPFS (unaligned accesses) 

Effect of Block Alignment on GPFS Performance (each blocksize)
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GPFS: Unaligned accesses 

GPFS Performance as a function of Block Alignment (1024 byte 
blocksize)
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GPFS: (what alignment is best?) 

Worst and best alignments for GPFS at different blocksizes
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No consistently “best” alignment except for perfect block alignment!

That means 256k block boundaries for GPFS!




Scaling (No. of Processors) 

•  The I/O performance peaks at: 
–   P = 256 on Jaguar (lstripe=144),  
–  Close to peaks at P = 64 on Bassi 

•  The peak of I/O performance can often be 
achieved at relatively low concurrency 

I/O Scaling on Bassi
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Shared vs. One file Per Proc 

•  The performance of using a shared  file is very 
close to using one file per processor 

•  Using a shared file performs even better on 
Jaguar due to less metadata overhead 

Bassi
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Programming Interface 

•  MPI-IO is close to POSIX performance 
•  Concurrent POSIX access to single-file works correctly 

–  MPI-IO used to be required for correctness, but no longer 
•  HDF5 (v1.6.5) falls a little behind, but tracks MPI-IO performance 
•  parallelNETCDF (v1.0.2pre) performs worst, and still has 4GB dataset size limitation 

(due to limits on per-dimension sizes on latest version) 
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Programming Interface 

•  POSIX, MPI-IO, HDF5 (v1.6.5) offer very similar 
scalable performance 

•  parallelNetCDF (v1.0.2.pre): flat performance 
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Comments for DARPA 

•  If you are looking at low-level disk access 
patterns, you are probably looking at the wrong 
thing 
–  Reflection of imperative programming interface that forces 

user to specify physical layout on disk 
–  Users always make poor choices for physical layout 
–  You will end up designing I/O for bad use case 

•  Conclusion: Application developers forced to 
make bad choices by imperative APIs 
–  MPI-IO is a pretty good API for an imperative approach to 

describing mapping from memory to disk file layout 
–  The imperative programming interface embodied by MPI-IO 

was the wrong choice! (we screwed up years ago and are 
paying the price now for our mistake!) 

–  Lets not set new I/O system requirements based on existing 
physical disk access patterns -- consider logical data 
schema of the applications (more freedom for optimization) 



Data Layout: 
Imperative vs. Declarative 

•  Physical vs. Logical 
–  Physical Layout In Memory 
–  Physical Layout on Disk 
–  Logical Layout (data model): intent of application developer 

•  Imperative Model 
–  Define physical layout in memory 
–  Define physical intended physical layout on disk 
–  Commit operation (read or write) 
–  Performance  

•  Limited by strict POSIX semantics (looking for “relaxed POSIX”) 
•  Compromised by Naïve users making wrong choices for phys layout 
•  Limited freedom to optimize performance (data-shipping) 

–  APIs: MPI-IO, POSIX 
•  Declarative Model 

–  Define physical layout in memory 
–  Define logical layout for “global view” of the data 
–  Performance 

•  Lower layers of the software get to make decisions about optimizing physical layout 
and annotate the file to record the choices that it made 

•  User needn’t be exposed to details of disk or “relaxed POSIX” semantics 
–  API/Examples: PANDA.  HDF5 has some elements, but limited by MPI-IO 



Declarative vs. Imperative   

•  Application developers really don’t care (or 
shouldn’t care) about physical layout 
–  Know physical layout in memory 
–  Know desired “logical layout” for the global view of their 

“data” 
–  Currently FORCED to define physical layout because the $

%^&* API requires it! 
–  When forced to define the physical (in memory) to physical 

(on disk) mapping, application developers always make the 
wrong choices! 

–  Declarative model to specify desired logical layout would be 
better, and provide filesystems or APIs more freedom to 
optimize performance (e.g. Server Directed I/O) 

•  DB Pioneers learned these lessons 50 years ago 
–  Our community is either stupid or arrogant for failing to heed 

these lessons (probably just arrogant) 



Say something nice about 
server directed I/O 

•  Describe data layout in memory 
–  Typically only have to do once after code 

startup  
–  exception for adaptive codes, but there are not 

too many of them 
•  Describe desired layout on disk *or* 

desired logical layout 
•  Say “commit” when you want to write it 

out 
•  I/O subsystem requests data from 

compute nodes in optimal order for 
storage subsystem 



FSP Storage Recommendations 

•  Need Common Structures for Data Exchange

–  Must be able to compare data between simulation and experiment

–  Must be able to compare data between different simulations

–  Must be able to use output from one set of codes as boundary 

conditions for a different set of codes

–  Must be able to share visualization and analysis tools & software 

infrastructure

•  Implementation (CS issues)


–  separate data model from file format

–  Develop veneer interfaces (APIs) to simplify data access for physics 

codes

–  utilize modern database-like file storage approaches (hierarchical, 

self-describing file formats)

•  Approach (management & funding)


–  must be developed through agreements/compromises within 
community (not imposed by CS on the physics community)


–  not one format (many depending on area of data sharing)

–  requires some level of sustained funding to maintain and document 

the data models & associated software infrastructure (data storage 
always evolves, just as the physics models and ITER engineering 
design evolves)




Comments about Performance for Multicore




The Future of  
HPC System Concurrency 
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Must ride exponential wave of increasing concurrency for forseeable future!


You will hit 1M cores sooner than you think!




Scalable I/O Issues For High 
On-Chip Concurrency 

•  Scalable I/O for massively concurrent systems! 
–  Many issues with coordinating access to disk within node (on chip 

or CMP) 
–  OS will need to devote more attention to QoS for cores competing 

for finite resource (mutex locks and greedy resource allocation 
policies will not do!) (it is rugby where device == the ball) 

nTasks I/O Rate  
16 Tasks/node 

I/O Rate 
8 tasks per node 

8 - 131 Mbytes/sec 
16 7 Mbytes/sec 139 Mbytes/sec 
32 11 Mbytes/sec 217 Mbytes/sec 
64 11 Mbytes/sec 318 Mbytes/sec 
128 25 Mbytes/sec 471 Mbytes/sec 



Old OS Assumptions are 
Bogus on Hundreds of Cores 

•  Assumes limited number of CPUs that must be shared 
–  Old OS: time-multiplexing (context switching and cache pollution!) 
–  New OS: spatial partitioning 

•  Greedy allocation of finite I/O device interfaces (eg. 100 cores go after the 
network interface simultaneously) 

–  Old OS: First process to acquire lock gets device (resource/lock contention! Nondet delay!) 
–  New OS: QoS management for symmetric device access 

•  Background task handling via threads and signals 
–  Old OS: Interrupts and threads (time-multiplexing) (inefficient!) 
–  New OS: side-cores dedicated to DMA and async I/O 

•  Fault Isolation 
–  Old OS: CPU failure --> Kernel Panic (will happen with increasing frequency in future silicon!) 
–  New OS: CPU failure --> Partition Restart (partitioned device drivers) 

•  Old OS invoked any interprocessor communication or scheduling vs. direct HW 
access 

•  New OS/CMP contract 
–  No Time Multiplexing: Spatial partitioning 
–  No interrupts:  use side-cores 
–  Resource Management:  Need QoS policy enforcement at deepest level of chip and OS 



Comments about Interconnect Performance




Interconnect Design Considerations  
for Massive Concurrency 

•  Application studies provide insight to 
requirements for Interconnects (both on-
chip and off-chip) 

–  On-chip interconnect is 2D planar 
(crossbar won’t scale!) 

–  Sparse connectivity for dwarfs; crossbar is 
overkill 

–  No single best topology 
•  A Bandwidth-oriented network for data 

–  Most point-to-point message exhibit 
sparse topology & bandwidth bound 

•  Separate Latency-oriented network for 
collectives 

–  E.g., Thinking Machines CM-5, Cray T3D, 
IBM BlueGene/L&P 

•  Ultimately, need to be aware of the on-chip 
interconnect topology in addition to the off-
chip topology 

–  Adaptive topology interconnects (HFAST) 
–  Intelligent task migration? 



Interconnects 
Need For High Bisection Bandwidth 

•  3D FFT easy-to-identify 
as needing high bisection 
–  Each processor must send 

messages to all PE’s! (all-to-all) 
for 1D decomposition 

–  However, most implementations 
are currently limited by overhead 
of sending small messages!  

–  2D domain decomposition 
(required for high concurrency) 
actually requires sqrt(N) 
communicating partners! (some-
to-some) 

•  Same Deal for AMR 
–  AMR communication is sparse, 

but by no means is it bisection 
bandwidth limited 



Accelerator Modeling Data 

•  Point data 
–  Electrons or protons 
–  Millions or billions in a simulation 
–  Distribution is non-uniform 

•  Fixed distribution at start of simulation 
•  Change distribution (load balancing) each iteration 

•  Attributes of a point 
–  Location: (double) x,y,z 
–  Phase: (double) mx,my,mz 
–  ID: (int64) id 
–  Other attributes 



Accelerator Modeling Data 

Storage Format


. . .
X


Y


Z


…


Laid out sequentially on disk

Some formats are interleaved, 

but causes problems for data analysis


Easier to reorganize in memory than on disk!


X1
X2
X3
X4
X5
X6
X7
 Xn

0
 NX-1


NX
 NX + NY-1


NX + NY

Y1
Y2
 Yn




Accelerator Modeling Data 

Storage Format


X


Y


Z


…


P1
 P2


2k particles
 380 p


P3


1k particles


. . .
X1
X2
X3
X4
X5
X6
 ..
 Xn


Y1
Y2
 Yn




Accelerator Modeling Data 

Calculate Offsets using Collective (AllGather)


X


Y


Z


…


P1
 P2


2k particles
 380 p


P3


1k particles


2k elements
 380 elem
 1k elements


Then write to mutually exclusive sections of array


Still suffers from alignment issues…


One array at a time




Accelerator Modeling Benchmark 

One file per 
processor  
Raw binary 

1288 MB/s 20 MB/s 

Parallel I/O (1-file) 
Raw binary MPI-IO 

241 MB/s 3 MB/s 

Parallel I/O (1-file) 
pHDF5 -- H5Part 

773 MB/s 12 MB/s 

Seaborg: 
64nodes, 


 
1024 processors, 


 
780 Gbytes of data total




Physical Layout Tends to Result in 
Handful of  I/O Patterns 

•  2D-3D I/O patterns (striding) 
–  1 file per processor (Raw Binary and HDF5) 

•  Raw binary assesses peak performance 
•  HDF5 determines overhead of metadata, data encoding, and small 

accesses associated with storage of indices and metadata 
–  1-file reverse domain decomp (Raw MPI-IO and pHDF5) 

•  MPI-IO is baseline (peak performance) 
•  Assess pHDF5 or pNetCDF implementation overhead 

–  1-file chunked (Raw MPI-IO and pHDF5) 
•  1D I/O patterns (writing to distinct 1D offsets) 

–  Same as above, but for 1D data layouts 
–  1-file per processor is same in both cases 

•  MadBench? 
–  Out-of-Core performance (emphasizes local filesystem?) 



GPFS MPI-I/O Experiences 

nTasks I/O Rate  
16 Tasks/node 

I/O Rate 
8 tasks per node 

8 - 131 Mbytes/sec 
16 7 Mbytes/sec 139 Mbytes/sec 
32 11 Mbytes/sec 217 Mbytes/sec 
64 11 Mbytes/sec 318 Mbytes/sec 
128 25 Mbytes/sec 471 Mbytes/sec 

• Block domain decomp of 512^3 3D 8-byte/element array in memory

written to disk as single undecomposed 512^3 logical array.

• Average throughput for 5 minutes of writes x 3 trials

• Issue is related to LAPI lock contention…




GPFS: BW as function of write length 

Block Aligned on disk!

Page Aligned in memory!


Amdahl’s law effects for

Metadata storage…


Serial Performance as a function of Blocksize
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GPFS (unaligned accesses) 

Effect of Block Alignment on GPFS Performance (each blocksize)
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Minbw is really
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GPFS: Unaligned accesses 

GPFS Performance as a function of Block Alignment (1024 byte 
blocksize)
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GPFS: (what alignment is best?) 

Worst and best alignments for GPFS at different blocksizes
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No consistently “best” alignment except for perfect block alignment!

That means 256k block boundaries for GPFS!




Higher-Level Storage Organization 



HDF4/NetCDF Data Model 

•  Datasets 
–  Name 
–  Datatype 
–  Rank,Dims 

SDS 0:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 1:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 2:   name= pressure

Type=Float64

Rank=3 Dims=128,128,64


Datasets are inserted

sequentially to

the file


Can be randomly

accessed on read




HDF4/NetCDF Data Model 

•  Datasets 
–  Name 
–  Datatype 
–  Rank,Dims 

•  Attributes 
–  Key/value pair 
–  DataType and length 

SDS 0:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 1:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 2:   name= pressure

Type=Float64

Rank=3 Dims=128,128,64


“time” = 0.5439


“origin”=0,0,0


“time” = 1.329

“origin”=0,0,0


“time” = 0.5439

“origin”=0,0,0




HDF4/NetCDF Data Model 

•  Datasets 
–  Name 
–  Datatype 
–  Rank,Dims 

•  Attributes 
–  Key/value pair 
–  DataType and length 

•  Annotations 
–  Freeform text 
–  String Termination 

SDS 0:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 1:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 2:   name= pressure

Type=Float64

Rank=3 Dims=128,128,64


“time” = 0.5439


“origin”=0,0,0


“time” = 1.329

“origin”=0,0,0


“time” = 0.5439

“origin”=0,0,0


Author comment:  Something interesting!




HDF4/NetCDF Data Model 

•  Datasets 
–  Name 
–  Datatype 
–  Rank,Dims 

•  Attributes 
–  Key/value pair 
–  DataType and length 

•  Annotations 
–  Freeform text 
–  String Termination 

•  Dimensions 
–  Edge coordinates 
–  Shared attribute 

SDS 0:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 1:   name= density

Type=Float64

Rank=3 Dims=128,128,64


SDS 2:   name= pressure

Type=Float64

Rank=3 Dims=128,128,64


“time” = 0.5439


“origin”=0,0,0


“time” = 1.329

“origin”=0,0,0


“time” = 0.5439

“origin”=0,0,0


“dims0”= < edge coords for X>

“dims1”= < edge coords for Y>

“dims2”= < edge coords for Z>


Author comment:  Something interesting!




HDF5 Data Model 

•  Groups 
–  Arranged in directory 

hierarchy 
–  root group is always ‘/’ 

•  Datasets 
–  Dataspace 
–  Datatype 

•  Attributes 
–  Bind to Group & Dataset 

•  References 
–  Similar to softlinks 
–  Can also be subsets of 

data 

“/”

(root)


“Dataset0”

type,space


“Dataset1”

type, space


“subgrp”


“time”=0.2345


“validity”=None


“author”=JoeBlow


“Dataset0.1”

type,space


“Dataset0.2”

type,space




HDF5 Data Model (funky 
stuff) 

•  Complex Type Definitions 
–  Not commonly used feature 

of the data model. 
–  Potential pitfall if you 

commit complex datatypes 
to your file 

•  Comments 
–  Yes, annotations actually do 

live on. 

“/”

(root)


“Dataset0”

type,space


“Dataset1”

type, space


“subgrp”


“time”=0.2345


“validity”=None


“author”=JoeBlow


“Dataset0.1”

type,space


“Dataset0.2”

type,space


typedef




HDF5 Data Model (caveats) 

•  Flexible/Simple Data Model 
–  You can do anything you want 

with it! 
–  You typically define a higher 

level data model on top of 
HDF5 to describe domain-
specific data relationships 

–  Trivial to represent as XML!  
•  The perils of flexibility! 

–  Must develop community 
agreement on these data 
models to share data 
effectively 

–  Multi-Community-standard 
data models required across 
for reusable visualization tools 

–  Preliminary work on Images 
and tables 

“/”

(root)


“Dataset0”

type,space


“Dataset1”

type, space


“subgrp”


“time”=0.2345


“validity”=None


“author”=JoeBlow


“Dataset0.1”

type,space


“Dataset0.2”

type,space




Data Storage Layout / Selections 

•  Elastic Arrays 
•  Hyperslabs 

–  Logically contiguous chunks of data 
–  Multidimensional Subvolumes 
–  Subsampling (striding, blocking) 

•  Union of Hyperslabs 
–  Reading a non-rectangular sections  

•  Gather/Scatter 
•  Chunking 

–  Usually for efficient Parallel I/O 



Dataspace Selections (H5S) 

Transfer a subset of data from disk to fill a memory buffer 

Memory Dataspace


mem_space = H5S_ALL


Or


mem_space =H5Dcreate(rank=2,dims[2]={4,6});


Transfer/Read operation

  H5Dread(dataset,mem_datatype, mem_space, disk_space,



 
H5P_DEFAULT, mem_buffer);


Disk Dataspace

H5Sselect_hyperslab(disk_space, H5S_SELECT_SET,



offset[3]={1,2},NULL,count[2]={4,6},NULL)


2

1

4


6




Dataspace Selections (H5S) 

Transfer a subset of data from disk to subset in memory 

Memory Dataspace

mem_space =H5Dcreate_simple(rank=2,dims[2]={12,14});

H5Sselect_hyperslab(mem_space, H5S_SELECT_SET,



offset[3]={0,0},NULL,count[2]={4,6},NULL)


Transfer/Read operation

  H5Dread(dataset,mem_datatype, mem_space, disk_space,



 
H5P_DEFAULT, mem_buffer);


Disk Dataspace

H5Sselect_hyperslab(disk_space, H5S_SELECT_SET,



offset[3]={1,2},NULL,count[2]={4,6},NULL)


2

1

4


6


12


14




pHDF5 (example 1) 

P0
 P1
 P2
 P3


Dataset

Name=“dat”

Dims={64,64}


• File open requires explicit selection of Parallel I/O layer. 
• All PE’s collectively open file and declare the overall size of the 
dataset. 

All MPI Procs!

props = H5Pcreate(H5P_FILE_ACCESS); 

/* Create file property list and set for Parallel I/O */

H5Pset_fapl_mpio(prop, MPI_COMM_WORLD, 


MPI_INFO_NULL); 

file=H5Fcreate(filename,H5F_ACC_TRUNC, 



H5P_DEFAULT,props); /* create file */

H5Pclose(props); /* release the file properties list */

filespace = H5Screate_simple(rank=2,dims[2]={64,64},



NULL)

dataset = H5Dcreate(file,”dat”,H5T_NATIVE_INT,



space,H5P_DEFAULT); /* declare dataset */




pHDF5 (example 1 cont…) 

P1
 P2
 P3


• Each proc selects a hyperslab of the dataset that represents 
its portion of the domain-decomposed dataset and read/write 
collectively or independently. 

All MPI Procs!

/* select portion of file to write to */

H5Sselect_hyperslab(filespace, H5S_SELECT_SET, 




start= P0{0,0}:P1{0,32}:P2{32,32}:P3{32,0}, 


stride= {32,1},count={32,32},NULL);


/* each proc independently creates its memspace */

memspace = H5Screate_simple(rank=2,dims={32,32},



NULL);

/* setup collective I/O prop list */

xfer_plist = H5Pcreate (H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dataset,H5T_NATIVE_INT, memspace, filespace,



xfer_plist, local_data); /* write collectively */


Select

{32,32}

@{0,0}


Select

{32,32}

@{0,32}


Select

{32,32}


@{32,32}

Select


{32,32}

@{32,0}


P0




Serial I/O Benchmarks 

System HDF4.1r5 
(netCDF) 

HDF5 
v1.4.4 

FlexIO 
(Custom) 

F77  
Unf 

SGI Origin 3400  
(escher.nersc.gov) 

111M/s 189M/s 180M/s 140M/s 

IBM SP2  
(seaborg.nersc.gov) 

65M/s 127M/s 110M/s 110M/s 

Linux IA32  
(platinum.ncsa.uiuc.edu) 

34M/s 40M/s 62M/s 47M/s 

Linux IA64 Teragrid node 
(titan.ncsa.uiuc.edu) 

26M/s 83M/s 77M/s 112M/s 

NEC/Cray SX-6 
(rime.cray.com) 

• Write 5-40 datasets of 128^3 DP float data

• Single CPU  (multiple CPU’s can improve perf. until interface saturates)

• Average of 5 trials




GPFS MPI-I/O Experiences 

nTasks I/O Rate  
16 Tasks/node 

I/O Rate 
8 tasks per node 

8 - 131 Mbytes/sec 
16 7 Mbytes/sec 139 Mbytes/sec 
32 11 Mbytes/sec 217 Mbytes/sec 
64 11 Mbytes/sec 318 Mbytes/sec 
128 25 Mbytes/sec 471 Mbytes/sec 

• Block domain decomp of 512^3 3D 8-byte/element array in memory

written to disk as single un-decomposed 512^3 logical array.

• Average throughput for 5 minutes of writes x 3 trials



